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Talk Outline

•
 

Feedbacks and Equilibrium Sensitivity

•
 

Climate OSSE

–
 

Optimal Methods/Multi-pattern regression

–
 

Response: GPS Radio Occultation (RO)

–
 

Feedbacks: Clear-sky Thermal IR Spectra

•
 

Discussion
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Climate Feedback
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Climate Feedback (2)
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Feedback Uncertainty

Bony, S., et al., 2006: How well do we understand and evaluate climate 
change feedback processes? J. Climate, 19, 3445-3482.
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Feedbacks and Climate Prediction

Hansen, J. et al., 1985: Climate response 
times: Dependence on climate sensitivity 
and ocean mixing. Science, 229, 857-859.

1

i

shortwave

i

longwave

2radiative2radiative

22

)CO1()CO2(
)CO1()CO2(

−

⎟
⎠
⎞

⎜
⎝
⎛ −−Γ=

×−×
×−×

≡

∑∑ ii

FF
TTs

γγ

( )

( ) ( )

∫ ′′Δ+=

Δ−Δ=Δ=

×=

′−−

−

t tt tdetFsTtT

TFsFs
dt
dT

dCs

0
)(

rad0

radiativeimbalance

1
ocean

)()( ββ

ββ

ρβ



21 October 2008 CLARREO: Feedbacks and Sensitivity 7

Climate OSSE: The Science of a Benchmark

Benchmark 
Measurement

•

 

Traceable to 
international standards

•

 

Minimize sampling 
error

Climate 
Uncertainty

•

 

Shortwave forcing

•

 

Longwave forcing

•

 

Climate feedbacks & 
sensitivity

Climate OSSE

•

 

Simulate trends in 
observable as 
produced by different 
models

•

 

Explore information 
content with various 
contravariant

 
fingerprints

Climate OSSE Results
•

 

Detection time and accuracy requirements

•

 

How measurement constrains climate predictability

•

 

Relative redundancy with other benchmark data types
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Calibration: Double Differencing

Hardy, K.R., G.A. Hajj, and E.R. Kursinski, 1994: Accuracies of atmospheric 
profiles obtained from GPS occultations. Int. J. Sat. Comm., 12, 463-473.
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Optimal Fingerprinting/Multi-pattern Regression

We are limited by the naturally occurring inter-annual variability of 
the climate system…so optimize.

Find signal amplitudes (αm

 

) and uncertainty (Σα

 

) in a data set (d) 
according to the signals’

 

patterns (si

 

) against a background of 
natural variability, the eigenvectors and eigenvalues

 

of which 
are eμ

 

and λμ

 

.
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GPS Radio Occultation

•
 

Refractivity

•
 

“Dry”
 

pressure

•
 

Geopotential
 

height
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GPS RO Dry Pressure Tendency
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How Does GPS RO Test GCMs?
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Thermal Infrared Spectra
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Thermal Infrared Spectra (2)
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Cumulative Signal
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Applied Scalar Prediction
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Summary

•
 

Trends in GPS radio occultation data bear 
strongly on global average surface air 
temperature. 

•
 

Trends in the outgoing longwave spectrum can 
be used to monitor longwave forcing and 
constrain all longwave feedbacks 
observationally. Optimization in space necessary 
to reduce detection times. 

•
 

Work in progress includes simulations in cloudy 
skies and shortwave trends. 
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Backup Slides
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Applied Scalar Prediction

Find signal amplitudes (αm

 

) and uncertainty (Σα

 

) in a data set (d) 
according to the signals’

 

patterns (si

 

) against a background of 
natural variability, the eigenvectors and eigenvalues

 

of which 
are eμ

 

and λμ

 

.
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Applied Scalar Prediction

Find signal amplitudes (αm

 

) and uncertainty (Σα

 

) in a data set (d) 
according to the signals’

 

patterns (si

 

) against a background of 
natural variability, the eigenvectors and eigenvalues

 

of which 
are eμ

 

and λμ

 

.
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The Climate Benchmark
• Lat-lon grid is standardized

• Uncertainty derived from 
independent tests
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How Not to Monitor Climate…
• Tape measure calibration is 

unstandardized

• Tape measure subject to 
failure (by scissors)
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How Does Spectral IR Test GCMs?
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How Does Spectral IR Test GCMs?
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Water Vapor-Longwave Feedback Precision After 
20 Years

Linear Trend Analysis 
(W m-2

 

K-1)
Correlation Analysis 

(W m-2

 

K-1)

Truth Data Truth Data

GFDL CM2.0 3.30 ±

 

1.85 3.20 ±

 

1.85 2.75 ±

 

0.20 2.53 ±

 

0.18

GISS E-H 2.63 ±

 

0.81 2.95 ±

 

0.62 2.61 ±

 

0.10 2.94 ±

 

0.12

MIROC3.2 2.81 ±

 

0.85 2.53 ±

 

0.62 2.68 ±

 

0.13 2.49 ±

 

0.10

ECHAM5 3.14 ±

 

1.60 3.53 ±

 

1.81 2.98 ±

 

0.08 3.36 ±

 

0.10

CCSM3 2.80 ±

 

0.92 2.81 ±

 

0.91 2.66 ±

 

0.17 2.66 ±

 

0.16

HadCM3 3.10 ±

 

1.48 2.65 ±

 

1.15 2.78 ±

 

0.09 2.74 ±

 

0.11

…scales as (Δt)-3/2 …scales as (Δt)-1/2
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Water Vapor-Longwave Feedback Precision After 
20 Years

Linear Trend Analysis 
(W m-2

 

K-1)
Correlation Analysis 

(W m-2

 

K-1)

Truth Data Truth Data

GFDL CM2.0 3.30 ±

 

1.85 3.20 ±

 

1.85 2.75 ±

 

0.20 2.53 ±

 

0.18

GISS E-H 2.63 ±

 

0.81 2.95 ±

 

0.62 2.61 ±

 

0.10 2.94 ±

 

0.12

MIROC3.2 2.81 ±

 

0.85 2.53 ±

 

0.62 2.68 ±

 

0.13 2.49 ±

 

0.10

ECHAM5 3.14 ±

 

1.60 3.53 ±

 

1.81 2.98 ±

 

0.08 3.36 ±

 

0.10

CCSM3 2.80 ±

 

0.92 2.81 ±

 

0.91 2.66 ±

 

0.17 2.66 ±

 

0.16

HadCM3 3.10 ±

 

1.48 2.65 ±

 

1.15 2.78 ±

 

0.09 2.74 ±

 

0.11

…scales as (Δt)-3/2 …scales as (Δt)-1/2

Optimization: Little as of yet, but 
inclusion of the spatial dimension 
should yield substantial improvement.
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Accuracy Requirements, Detection Times

•

 

With observations traceable to international standards, one 
evaluates the uncertainty (accuracy) of individual measurements in 
a timeseries.

•

 

Any timeseries of climate data includes both natural variability

 

with 
standard deviation σv

 

, timescale τv

 

, and measurement uncertainty 
(σm

 

and τm

 

).

With a timeseries of length ∆t, the uncertainty in the determination of 
the slope determination is

( )mmvvtm τστσδ 2232 )(12 +Δ= −

Leroy, S.S., J.G. Anderson, and G. Ohring, 2008: Climate signal detection 
times and constraints on climate benchmark accuracy requirements. J. 
Climate, 21, 841-846.
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Measurement Uncertainty & Detection Times
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Natural variability: 0.18 K, 1.54 year 
correlation time (UKMO HadCM3), 
Trend: ~0.2 K decade-1.

Optimization

 

has the effect of 
lowering the entire family of curves. 

Leroy, S.S., J.G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on 
climate benchmark accuracy requirements. J. Climate, 21, 841-846.
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Discussion: Next Steps

•
 

All-sky conditions
–

 

Explore potential for optimization: expand into spatial dimension
–

 

Cloud Feedback Model Intercomparison Project
–

 

Potentially GISS E-R in perturbed physics ensemble
–

 

Fast forward model for radiance (AER’s OSS)

•
 

Anticipated results
–

 

Information content in far infrared (100-300 cm-1)
–

 

Information content as a function of spectral resolution
–

 

Information content in joint GPS RO –

 

Spectral IR data vector
–

 

Accuracy requirements

•
 

Shortwave OSSE
–

 

Separating response (clouds) from forcing (aerosol)
–

 

Exploring necessary dimensionality: observation → SW↑
–

 

Accuracy requirements
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Model-predicted Trends in the IR

0 500 1000 1500 2000
Frequency [cm-1]

-0.4

-0.2

0.0

Δ 
R

ad
ia

nc
e 

[1
0-6

 r
ad

]



21 October 2008 CLARREO: Feedbacks and Sensitivity 35

Model-predicted Trends in the IR
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Deconstructing the IR Signal
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Cumulative Signal
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Cumulative Signal
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Cumulative Signal
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Cumulative Signal
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Reconstructing the IR Signal
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Reconstructing the IR Signal
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… which is Optimal Fingerprinting

Find signal amplitudes (αm

 

) and uncertainty (Σα

 

) in a data set (d) 
according to the signals’

 

patterns (si

 

) against a background of 
natural variability, the eigenvectors and eigenvalues

 

of which 
are eμ

 

and λμ

 

.
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… which is Optimal Fingerprinting

Find signal amplitudes (αm

 

) and uncertainty (Σα

 

) in a data set (d) 
according to the signals’

 

patterns (si

 

) against a background of 
natural variability, the eigenvectors and eigenvalues

 

of which 
are eμ

 

and λμ

 

.
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